
pyrodeo Documentation
Release 0.0.9

Sijme-Jan Paardekooper

Jun 14, 2018

Contents:

1 Installation 3

2 Quick start 5

3 Equations solved 7
3.1 Cartesian coordinates . 7
3.2 Shearing Sheet . 7
3.3 Cylindrical coordinates . 8
3.4 Spherical coordinates . 9
3.5 Extra source terms . 9

4 Numerical method 11
4.1 Dimensional splitting . 11
4.2 Orbital advection . 13
4.3 Algorithm overview . 13
4.4 Boundary conditions . 14

5 Output 15

6 Examples 17
6.1 Shock tube . 17
6.2 Instability in shearing sheet . 17
6.3 Disc-planet interaction . 19

7 Class reference 21
7.1 Coordinates . 21
7.2 State . 22
7.3 Param . 23
7.4 Conservation law solver . 24
7.5 Linear advection solver . 25
7.6 Roe solver . 26
7.7 Hydro . 27
7.8 Simulation . 29

Python Module Index 31

i

ii

pyrodeo Documentation, Release 0.0.9

Pyrodeo is a Python implementation of RODEO (ROe solver for Disc-Embedded Objects), a Roe solver implementa-
tion aimed at hydrodynamic simulations of astrophysical discs.

Contents: 1

pyrodeo Documentation, Release 0.0.9

2 Contents:

CHAPTER 1

Installation

If Python is not installed, download from here and install. The latest versions of Python come with package manager
pip included. Then Pyrodeo can be installed from the command line simply by entering:

pip install pyrodeo

3

https://www.python.org/downloads/

pyrodeo Documentation, Release 0.0.9

4 Chapter 1. Installation

CHAPTER 2

Quick start

Within Python, first import the simulation module:

>>> import pyrodeo

Create a simulation in Cartesian geometry with standard parameters:

>>> sim = pyrodeo.Simulation.from_geom('cart')

Run the simulation up to t=0.25:

>>> sim.evolve([0.25])

Since the standard initial conditions consist of constant density and pressure and zero velocity, no visible evolution
takes place. For more interesting examples, see Examples.

5

pyrodeo Documentation, Release 0.0.9

6 Chapter 2. Quick start

CHAPTER 3

Equations solved

The current version supports inviscid isothermal hydrodynamics in three spatial dimensions. Isothermal means the
pressure 𝑝 is related to the density 𝜌 simply through 𝑝 = 𝑐2𝜌, where the sound speed 𝑐 is either a constant (fully
isothermal) or a prescribed function of position (locally isothermal). Four geometries are available: Cartesian coordi-
nates, the shearing sheet, cylindrical coordinates and spherical coordinates.

3.1 Cartesian coordinates

In Cartesian coordinates, we have the continuity equation:

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑣𝑥) +

𝜕

𝜕𝑦
(𝜌𝑣𝑦) +

𝜕

𝜕𝑧
(𝜌𝑣𝑧) = 0

Momentum in x-direction:

𝜕

𝜕𝑡
(𝜌𝑣𝑥) +

𝜕

𝜕𝑥
(𝜌𝑣2𝑥 + 𝑐2𝜌) +

𝜕

𝜕𝑦
(𝜌𝑣𝑥𝑣𝑦) +

𝜕

𝜕𝑧
(𝜌𝑣𝑥𝑣𝑧) = 0

Momentum in y-direction:

𝜕

𝜕𝑡
(𝜌𝑣𝑦) +

𝜕

𝜕𝑥
(𝜌𝑣𝑥𝑣𝑦) +

𝜕

𝜕𝑦
(𝜌𝑣2𝑦 + 𝑐2𝜌) +

𝜕

𝜕𝑧
(𝜌𝑣𝑦𝑣𝑧) = 0

Momentum in z-direction:

𝜕

𝜕𝑡
(𝜌𝑣𝑧) +

𝜕

𝜕𝑥
(𝜌𝑣𝑥𝑣𝑧) +

𝜕

𝜕𝑦
(𝜌𝑣𝑦𝑣𝑧) +

𝜕

𝜕𝑧
(𝜌𝑣2𝑧 + 𝑐2𝜌) = 0

3.2 Shearing Sheet

The Shearing Sheet is essentially a Cartesian model of a small patch in an astrophysical disc. This patch is rotating
at the local Keplerian angular velocity Ω, which means that Coriolis and centrifugal-type forces need to be included
on the right-hand side of the equations. On the other hand, the patch is assumed to be small enough so that a local

7

pyrodeo Documentation, Release 0.0.9

Cartesian frame can be used in stead of cylindrical coordinates. Usually the computational domain is taken to be
periodic in y and shear-periodic in x (periodic but corrected for the shear). We therefore still have the continuity
equation:

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑣𝑥) +

𝜕

𝜕𝑦
(𝜌𝑣𝑦) +

𝜕

𝜕𝑧
(𝜌𝑣𝑧) = 0

The x-momentum equation now includes source terms on the right-hand side:

𝜕

𝜕𝑡
(𝜌𝑣𝑥) +

𝜕

𝜕𝑥
(𝜌𝑣2𝑥 + 𝑐2𝜌) +

𝜕

𝜕𝑦
(𝜌𝑣𝑥𝑣𝑦) +

𝜕

𝜕𝑧
(𝜌𝑣𝑥𝑣𝑧) = 2Ω𝜌𝑣𝑦 + 3𝜌Ω2𝑥

Same for the momentum equation in y-direction:

𝜕

𝜕𝑡
(𝜌𝑣𝑦) +

𝜕

𝜕𝑥
(𝜌𝑣𝑥𝑣𝑦) +

𝜕

𝜕𝑦
(𝜌𝑣2𝑦 + 𝑐2𝜌) +

𝜕

𝜕𝑧
(𝜌𝑣𝑦𝑣𝑧) = −2Ω𝜌𝑣𝑥

In the z-direction we get a source term due to the vertical component of the stellar gravity:

𝜕

𝜕𝑡
(𝜌𝑣𝑧) +

𝜕

𝜕𝑥
(𝜌𝑣𝑥𝑣𝑧) +

𝜕

𝜕𝑦
(𝜌𝑣𝑦𝑣𝑧) +

𝜕

𝜕𝑧
(𝜌𝑣2𝑧 + 𝑐2𝜌) = −𝜌Ω2𝑧

Note: In the shearing sheet the sound speed should really be constant (no locally isothermal shearing sheet). Together,
sound speed and angular velocity define a length scale 𝑐/Ω, which is a measure of the scale height of the disc. Typically
one chooses 𝑐 = Ω = 1, so that distances are measured in scale heights and time in inverse orbital frequency.

3.3 Cylindrical coordinates

For a full disc in two dimensions cylindrical coordinates (𝑅,𝜙, 𝑧) are preferred. This time we have geometrical source
terms and gravity from the central object to worry about. The continuity equation now reads:

𝜕

𝜕𝑡
(𝑅𝜌) +

𝜕

𝜕𝑅
(𝑅𝜌𝑣𝑅) +

𝜕

𝜕𝜙
(𝜌𝑣𝜙) +

𝜕

𝜕𝑧
(𝑅𝜌𝑣𝑧) = 0

The radial momentum equation now includes source terms representing centrifugal and gravitational forces, in addition
to a geometrical pressure source term:

𝜕

𝜕𝑡
(𝑅𝜌𝑣𝑅) +

𝜕

𝜕𝑅
(𝑅𝜌𝑣2𝑅 + 𝑐2𝑅𝜌) +

𝜕

𝜕𝜙
(𝜌𝑣𝑅𝑣𝜙) +

𝜕

𝜕𝑧
(𝑅𝜌𝑣𝑅𝑣𝑧) = 𝜌𝑣2𝜙 −𝑅2𝜌

𝐺𝑀*

(𝑅2 + 𝑧2)3/2
+ 𝑐2𝜌

In the 𝜙 direction we get a Coriolis source term:

𝜕

𝜕𝑡
(𝜌𝑣𝜙) +

𝜕

𝜕𝑅
(𝜌𝑣𝑅𝑣𝜙) +

1

𝑅

𝜕

𝜕𝜙
(𝜌𝑣2𝜙 + 𝑐2𝜌) +

𝜕

𝜕𝑧
(𝜌𝑣𝜙𝑣𝑧) = −2𝜌𝑣𝑅𝑣𝜙/𝑅

In the vertical direction we again have the vertical component of the stellar gravity:

𝜕

𝜕𝑡
(𝑅𝜌𝑣𝑧) +

𝜕

𝜕𝑅
(𝑅𝜌𝑣𝑅𝑣𝑧) +

𝜕

𝜕𝜙
(𝜌𝑣𝜙𝑣𝑧) +

𝜕

𝜕𝑧
(𝑅𝜌𝑣2𝑧 + 𝑐2𝑅𝜌) = −𝑅𝜌𝑧

𝐺𝑀*

(𝑅2 + 𝑧2)3/2

Note: The unit of mass is taken to be the mass of the central object. The unit of distance is some reference radius. The
unit of time is the inverse angular velocity at the reference radius. In this system of units, the gravitational constant is
unity, and one orbit equals 2𝜋 time units.

8 Chapter 3. Equations solved

pyrodeo Documentation, Release 0.0.9

3.4 Spherical coordinates

For a full disc in three dimensions spherical coordinates (𝑟, 𝜃, 𝜙) are often preferred. The continuity and momentum
equations now read:

𝜕

𝜕𝑡
(𝑟2 sin 𝜃𝜌) +

𝜕

𝜕𝑟
(𝑟2 sin 𝜃𝜌𝑣𝑟) +

𝜕

𝜕𝜙
(𝑟𝜌𝑣𝜙) +

𝜕

𝜕𝜃
(𝑟 sin 𝜃𝜌𝑣𝜃) = 0

𝜕

𝜕𝑡
(𝑟2 sin 𝜃𝜌𝑣𝑟) +

𝜕

𝜕𝑟
(𝑟2 sin 𝜃𝜌(𝑣2𝑟 + 𝑐2)) +

𝜕

𝜕𝜃
(𝑟𝜌𝑣𝑟𝑣𝜃 sin 𝜃) +

𝜕

𝜕𝜙
(𝑟𝜌𝑣𝑟𝑣𝜙) =

𝑟2 sin 𝜃𝜌
𝑣2𝜃 + 𝑣2𝜙

𝑟
− 𝑟2 sin 𝜃𝜌

𝜕Φ

𝜕𝑟
+ 2𝑟 sin 𝜃𝑐2𝜌

𝜕

𝜕𝑡
(𝑟2 sin 𝜃𝜌𝑣𝜃) +

𝜕

𝜕𝑟
(𝑟2 sin 𝜃𝜌𝑣𝑟𝑣𝜃) +

𝜕

𝜕𝜃
(𝑟 sin 𝜃(𝜌𝑣2𝜃 + 𝑝)) +

𝜕

𝜕𝜙
(𝑟𝜌𝑣𝜙𝑣𝜃) =

𝑟𝜌𝑣2𝜙 cos 𝜃 − 𝑟 sin 𝜃𝜌𝑣𝑟𝑣𝜃 + 𝑟 cos 𝜃𝑝

𝜕

𝜕𝑡
(𝑟2 sin 𝜃𝜌𝑣𝜙) +

𝜕

𝜕𝑟
(𝑟2 sin 𝜃𝜌𝑣𝑟𝑣𝜙) +

𝜕

𝜕𝜃
(𝑟 sin 𝜃𝜌𝑣𝜃𝑣𝜙) +

𝜕

𝜕𝜙
(𝑟𝜌(𝑣2𝜙 + 𝑐2)) =

−𝑟 sin 𝜃𝜌𝑣𝜙𝑣𝑟 − 𝑟𝜌𝑣𝜙𝑣𝜃 cos 𝜃

3.5 Extra source terms

Pyrodeo solves inviscid isothermal hydrodynamics, and in the shearing sheet and cylindrical and spherical geometries
only gravity from the central object is considered. Extra physics, as far as it concerns extra source terms, can be added
by a user-defined source integration function. See the Examples section. This function is called once per time step and
can also be used for monitoring various quantities (mass, torque on planet, etc.).

3.4. Spherical coordinates 9

pyrodeo Documentation, Release 0.0.9

10 Chapter 3. Equations solved

CHAPTER 4

Numerical method

4.1 Dimensional splitting

Pyrodeo uses dimensional splitting to integrate the equations.

4.1.1 First direction (x, R, r)

For the x direction (therefore neglecting y- and z-derivatives), we can cast the equations into the following form:

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕�̄�
(𝜌𝑣𝑥) = 0

𝜕

𝜕𝑡
(𝜌𝑣𝑥) +

𝜕

𝜕�̄�
(𝜌𝑣2𝑥 + 𝑐2𝜌) = 𝑆𝑥

𝜕

𝜕𝑡
(𝜌𝑣𝑦) +

𝜕

𝜕�̄�
(𝜌𝑣𝑥𝑣𝑦) = 0

𝜕

𝜕𝑡
(𝜌𝑣𝑧) +

𝜕

𝜕�̄�
(𝜌𝑣𝑥𝑣𝑧) = 0

For the Cartesian setup, we simply have

𝜌 = 𝜌, 𝑣𝑥 = 𝑣𝑥, 𝑣𝑦 = 𝑣𝑦, 𝑣𝑧 = 𝑣𝑧, 𝑐 = 𝑐, �̄� = 𝑥, 𝑦 = 𝑦, 𝑧 = 𝑧, 𝑆𝑥 = 0

For the shearing sheet, we need

𝜌 = 𝜌, 𝑣𝑥 = 𝑣𝑥, 𝑣𝑦 = 𝑣𝑦 − Ω𝑥/2, 𝑣𝑧 = 𝑣𝑧, 𝑐 = 𝑐, �̄� = 𝑥, 𝑦 = 𝑦, 𝑧 = 𝑧, 𝑆𝑥 = 2Ω𝜌(𝑣𝑦 + 3Ω𝑥/2)

In cylindrical coordinates we need

𝜌 = 𝑅𝜌, 𝑣𝑥 = 𝑣𝑅, 𝑣𝑦 = 𝑅𝑣𝜙, 𝑣𝑧 = 𝑣𝑧, 𝑐 = 𝑐, �̄� = 𝑅, 𝑦 = 𝜙, 𝑧 = 𝑧, 𝑆𝑥 = 𝜌𝑣2𝜙 − 𝑅2𝜌𝐺𝑀*

(𝑅2 + 𝑧2)3/2
+ 𝑐2𝜌

Finally, for spherical coordinates we need:

𝜌 = 𝑟2 sin 𝜃𝜌, 𝑣𝑥 = 𝑣𝑟, 𝑣𝑦 = 𝑟𝑣𝜙, 𝑣𝑧 = 𝑟𝑣𝜃, 𝑐 = 𝑐, �̄� = 𝑟, 𝑦 = 𝜙, 𝑧 = 𝜃, 𝑆𝑥 = 𝜌
𝑣2𝑧 + 𝑣2𝑦

𝑟3
− 𝜌

𝐺𝑀*

𝑟2
+

2𝑐2𝜌

𝑟

11

pyrodeo Documentation, Release 0.0.9

4.1.2 Second direction (y, 𝜙)

For the y-integration (neglecting x- and z-derivatives) we can cast the equations in the form:

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑦
(𝜌𝑣𝑦) = 0

𝜕

𝜕𝑡
(𝜌𝑣𝑥) +

𝜕

𝜕𝑦
(𝜌𝑣𝑥𝑣𝑦) = 0

𝜕

𝜕𝑡
(𝜌𝑣𝑦) +

𝜕

𝜕𝑦
(𝜌𝑣2𝑦 + 𝑐2𝜌) = 𝑆𝑦

𝜕

𝜕𝑡
(𝜌𝑣𝑧) +

𝜕

𝜕𝑦
(𝜌𝑣𝑦𝑣𝑧) = 0

For both the Cartesian setup and the shearing sheet, we simply have

𝜌 = 𝜌, 𝑣𝑥 = 𝑣𝑥, 𝑣𝑦 = 𝑣𝑦, 𝑣𝑧 = 𝑣𝑧, 𝑐 = 𝑐, �̄� = 𝑥, 𝑦 = 𝑦, 𝑧 = 𝑧, 𝑆𝑦 = 0

In cylindrical coordinates we need

𝜌 = 𝜌, 𝑣𝑥 = 𝑣𝑅, 𝑣𝑦 = 𝑣𝜙/𝑅, 𝑣𝑧 = 𝑣𝑧, 𝑐 = 𝑐/𝑅, �̄� = 𝑅, 𝑦 = 𝜙, 𝑧 = 𝑧, 𝑆𝑦 = 0

Finally, spherical coordinates:

𝜌 = 𝜌, 𝑣𝑥 = 𝑣𝑟, 𝑣𝑦 = 𝑣𝜙/(𝑟 sin 𝜃), 𝑣𝑧 = 𝑣𝜃, 𝑐 = 𝑐/(𝑟 sin 𝜃), �̄� = 𝑟, 𝑦 = 𝜙, 𝑧 = 𝜃, 𝑆𝑦 = 0

4.1.3 Third direction (z, 𝜃)

Finally, for the z integration we can cast the equations in the form:

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑧
(𝜌𝑣𝑧) = 0

𝜕

𝜕𝑡
(𝜌𝑣𝑥) +

𝜕

𝜕𝑦
(𝜌𝑣𝑥𝑣𝑧) = 0

𝜕

𝜕𝑡
(𝜌𝑣𝑦) +

𝜕

𝜕𝑧
(𝜌𝑣𝑦𝑣𝑧) = 0

𝜕

𝜕𝑡
(𝜌𝑣𝑧) +

𝜕

𝜕𝑧
(𝜌𝑣2𝑧 + 𝑐2𝜌) = 𝑆𝑧

For both the Cartesian setup, we simply have

𝜌 = 𝜌, 𝑣𝑥 = 𝑣𝑥, 𝑣𝑦 = 𝑣𝑦, 𝑣𝑧 = 𝑣𝑧, 𝑐 = 𝑐, �̄� = 𝑥, 𝑦 = 𝑦, 𝑧 = 𝑧, 𝑆𝑧 = 0,

with the shearing sheet being exactly the same but with a non-zero source 𝑆𝑧 = −𝜌Ω2𝑧.

In cylindrical coordinates we need

𝜌 = 𝜌, 𝑣𝑥 = 𝑣𝑅, 𝑣𝑦 = 𝑣𝜙/𝑅, 𝑣𝑧 = 𝑣𝑧, 𝑐 = 𝑐, �̄� = 𝑅, 𝑦 = 𝜙, 𝑧 = 𝑧, 𝑆𝑧 = −𝜌𝑧
𝐺𝑀*

(𝑅2 + 𝑧2)3/2

Finally, spherical coordinates:

𝜌 = sin 𝜃𝜌, 𝑣𝑥 = 𝑣𝑟, 𝑣𝑦 = sin 𝜃𝑣𝜙/𝑟, 𝑣𝑧 = 𝑣𝜃/𝑟, 𝑐 = 𝑐/𝑟, �̄� = 𝑟, 𝑦 = 𝜙, 𝑧 = 𝜃, 𝑆𝑧 = 𝜌 cot 𝜃(𝑣2𝑦/ sin2 𝜃 + 𝑐2)

12 Chapter 4. Numerical method

pyrodeo Documentation, Release 0.0.9

4.1.4 Unified approach

Note that the resulting equations are very symmetric in x, y and z: if we swap x and y in the y integration the equations
have exactly the same form as for the x integration. Similar for the z integration when swapping z and x. Therefore, if
we prepare all quantities appropriately, we only need a single hydrodynamic solver that is able to advance the system

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕�̄�
(𝜌𝑣𝑥) = 0

𝜕

𝜕𝑡
(𝜌𝑣𝑥) +

𝜕

𝜕�̄�
(𝜌𝑣2𝑥 + 𝑐2𝜌) = 𝑆𝑥

𝜕

𝜕𝑡
(𝜌𝑣𝑦) +

𝜕

𝜕�̄�
(𝜌𝑣𝑥𝑣𝑦) = 0

𝜕

𝜕𝑡
(𝜌𝑣𝑧) +

𝜕

𝜕�̄�
(𝜌𝑣𝑥𝑣𝑧) = 0

This is what is done in the Roe class. The necessary preparation is done in the Hydro class.

4.2 Orbital advection

In the case of the shearing sheet and the cylindrical disc there is a large 𝑣𝑦 that severely limits the time step. This limit
can be overcome by splitting the y integration one more by writing 𝑣𝑦 = �̄�𝑦 + 𝑣0 where 𝑣0 is independent of y

𝜕𝜌

𝜕𝑡
+ 𝑣0

𝜕𝜌

𝜕𝑦
+

𝜕

𝜕𝑦
(𝜌�̄�𝑦) = 0

𝜕

𝜕𝑡
(𝜌𝑣𝑥) + 𝑣0

𝜕

𝜕𝑦
(𝜌𝑣𝑥) +

𝜕

𝜕𝑦
(𝜌𝑣𝑥�̄�𝑦) = 0

𝜕

𝜕𝑡
(𝜌�̄�𝑦) + 𝑣0

𝜕

𝜕𝑦
(𝜌�̄�𝑦) +

𝜕

𝜕𝑦
(𝜌�̄�2

𝑦 + 𝑐2𝜌) = 0

The terms involving 𝑣0 make up a linear advection problem that can be solved straightforwardly for any time step.
This is done in the LinearAdvection class. The remaining terms are integrated in the Roe class, but at a much
larger time step because presumably 𝑢𝑦 ≪ 𝑣0.

4.3 Algorithm overview

A single time step in Hydro.evolve consists of the following steps:

1. Calculate time step using Hydro.calc_time_step.

2. Set shear periodic boundary conditions if necessary.

3. Preprocessing step to cast the equations in the same form for all geometries and directions, while at the same
time calculating the source term using Hydro.preprocess.

4. Use the Roe solver to advance the hydrodynamic equations using Roe.step.

5. Do orbital advection if necessary using Hydro.orbital_advection.

6. Do the inverse of step 3, getting all quantities back to their original form in Hydro.postprocess.

7. Integrate any extra source terms.

4.2. Orbital advection 13

pyrodeo Documentation, Release 0.0.9

4.4 Boundary conditions

The available boundary conditions are

• ‘closed’: closed boundary, i.e. no mass flow through the boundary. Waves will be reflected off the boundary.

• ‘periodic’: periodic boundary.

• ‘nonreflecting’: allow waves to pass through unhindered.

• ‘symmetric’: assume boundary is a symmetry plane. Very much like a closed boundary, but less general in that
it needs the boundary to be a plane of symmetry.

By default, all boundaries are set to be closed; this can be changed by changing the boundaries attribute of the Param
class.

14 Chapter 4. Numerical method

CHAPTER 5

Output

Once the integration routine Simulation.evolve has finished the final state is available through simulation.
state(). In addition, an output file rodeo.h5 is created containing the state at all specified checkpoints. This is an
HDF5 file created with h5py. It contains the following groups:

• param: Simulation parameters as specified in the Param class.

• coords: Coordinates from the Coordinates class.

• checkpoint#: State at checkpoint, where # stands for an integer.

Note: Both state and coordinate arrays include two ghost zones on each side in all directions. This is in order to be
able to restore a simulation from a checkpoint.

Note: The value stored in state.vely is the y-velocity with the orbital advection velocity removed! In other words, the
equilibrium solution in a constant pressure shearing sheet or cylindrical disc has vanishing state.vely.

An example of reading the file and plotting using matplotlib:

#!/usr/bin/python

import numpy as np
import matplotlib.pyplot as plt
import h5py

with h5py.File('./rodeo.h5', "r") as hf:
Select last available checkpoint
last_checkpoint = None
for k in hf.keys():

if (k != 'coords' and k != 'param'):
last_checkpoint = k

Get x coordinate
(continues on next page)

15

https://en.wikipedia.org/wiki/Hierarchical_Data_Format
https://www.h5py.org/
https://matplotlib.org/

pyrodeo Documentation, Release 0.0.9

(continued from previous page)

gc = hf.get('coords')
x = np.array(gc.get('x'))

Get density
g = hf.get(last_checkpoint)
dens = np.array(g.get('dens'))
Simulation time at checkpoint
t = g.attrs['time']

print('Plotting ' + last_checkpoint + ' at t = {}'.format(t))

plt.plot(x[:,0], np.mean(dens, axis=1))

plt.show()

16 Chapter 5. Output

CHAPTER 6

Examples

6.1 Shock tube

A simple example in Cartesian geometry is a one-dimensional isothermal shock tube:

#!/usr/bin/python

import numpy as np
import matplotlib.pyplot as plt
import pyrodeo

Create simulation with default resolution and domain
sim = pyrodeo.Simulation.from_geom('cart')

The basic state will have density and sound speed unity everywhere,
and the velocity will be zero. In order to create a simple shock tube,
now set density to 1/10 for x > 0.
sel = np.where(sim.coords.x > 0.0)
sim.state.dens[sel] = 0.1

Evolve until t = 0.25
sim.evolve([0.25], new_file=True)

Plot results
plt.plot(sim.coords.x[:,0,0], sim.state.dens[:,0,0])
plt.show()

The standard grid dimensions are (100,1), which means 100 cells in x and 1 in y. Try a higher resolution by explicitly
specifying the dimensions in Simulation.from_geom.

6.2 Instability in shearing sheet

A more demanding two-dimensional calculation involves the instability of a sharp density ridge in the shearing sheet:

17

pyrodeo Documentation, Release 0.0.9

#!/usr/bin/python

import numpy as np
import pyrodeo

Domain half-width in x and y
Lx = 2.0
Ly = 20.0

Create simulation, setting grid dimensions and domain
sim = pyrodeo.Simulation.from_geom('sheet',

dimensions=[32, 64, 1],
domain=([-Lx, Lx], [-Ly, Ly], []))

sim.param.boundaries[0] = ['shear periodic','shear periodic']
sim.param.boundaries[1] = ['periodic','periodic']

Density profile: single maximum in middle of domain
sim.state.dens = 0.5*np.cos(np.pi*sim.coords.x/Lx) + 1.0
Equilibrium vy to compensate for pressure gradient
sim.state.vely = -0.25*np.pi*np.sin(np.pi*sim.coords.x/Lx)/(sim.state.dens*Lx)
Add some noise to seed instability
sim.state.dens += 0.01*np.random.random_sample(np.shape(sim.state.dens))

Evolve until t = 100.0
sim.evolve(0.25*np.arange(400), new_file=True)

The checkpoints have been chosen close enough together to allow for the results to be animated:

#!/usr/bin/python

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import h5py

Return density at checkpoint n
def density_at_checkpoint(file_name, n):

dens = None
with h5py.File(file_name, 'r') as hf:

maxn = len(hf.keys()) - 2
if n >= maxn:

n = maxn - 1

s = "checkpoint{}".format(n)
g = hf.get(s)
dens = np.array(g.get('dens'))

return dens

fig = plt.figure()

Show initial conditions (checkpoint 0)
file_name = './rodeo.h5'
dens = density_at_checkpoint(file_name, 0)
im = plt.imshow(dens[:,:,0], animated=True)

Get next checkpoint

(continues on next page)

18 Chapter 6. Examples

pyrodeo Documentation, Release 0.0.9

(continued from previous page)

n = 0
def updatefig(*args):

global n

dens = density_at_checkpoint(file_name, n)
im.set_array(dens[:,:,0])
n += 1

return im,

Animate!
ani = animation.FuncAnimation(fig, updatefig, interval=50, blit=True)
plt.show()

6.3 Disc-planet interaction

As the final, most complex example, consider a planet embedded in a disc in cylindrical coordinates. Since pyrodeo
only includes gravity from the central star, we need to provide an extra source term to account for the gravitational
force due to the planet. In addition, we define wave-killing zones on the radial edges of the domain to avoid wave
reflection. It will take some time to run this simulation, so have a cup of tea and come back to see a Jupiter-like planet
carve out a gap in the disc.

#!/usr/bin/python

import numpy as np
import pyrodeo

Extra source terms: planet gravity
def planet_source(t, dt, coords, state, planetParam):

Mass ratio planet/star
mp = planetParam[0]
Softening length planet potential
eps = planetParam[1]

Coordinates
r = coords.x
p = coords.y

Planet coordinates
rp = 1.0
pp = 0.0

Distance to the planet
dist = np.sqrt(r*r + rp*rp - 2.0*r*rp*np.cos(p - pp) + eps*eps)

Potential gradient
dpotdr = mp*(r - rp*np.cos(p - pp))/(dist*dist*dist)
dpotdp = mp*r*rp*np.sin(p - pp)/(dist*dist*dist)

Indirect term
dpotdr += mp*np.cos(p - pp)/(rp*rp)
dpotdp -= mp*r*np.sin(p - pp)/(rp*rp)

Resulting source term
(continues on next page)

6.3. Disc-planet interaction 19

pyrodeo Documentation, Release 0.0.9

(continued from previous page)

source_velx = -dpotdr
source_vely = -dpotdp/(r*r)

Damping boundary conditions
Rin = 100.0*(r - 0.5)*(r - 0.5)
Rin[np.where(r > 0.5)] = 0.0
Rout = (r - 2.1)*(r - 2.1)/(0.4*0.4)
Rout[np.where(r < 2.1)] = 0.0
R = (Rin + Rout)*np.power(r, -1.5)

Damp towards initial state
source_dens = -(state.dens - 1.0)*R
source_velx -= state.velx*R
source_vely -= state.vely*R

Integrate extra source terms
state.dens += dt*source_dens*state.no_ghost
state.velx += dt*source_velx*state.no_ghost
state.vely += dt*source_vely*state.no_ghost

sim = pyrodeo.Simulation.from_geom('cyl',
dimensions=[128, 384, 1],
domain=([0.4, 2.5], [-np.pi, np.pi], []))

Sound speed constant H/r = 0.05
sim.state.soundspeed = 0.05*sim.state.soundspeed/np.sqrt(sim.coords.x)
sim.param.boundaries[0] = ['closed','closed']
sim.param.boundaries[1] = ['periodic','periodic']

Simulate a Jupiter planet up to 100 orbits
sim.evolve(2.0*np.pi*np.array([1.0,2.0,5.0,10.0,20.0,50.0,100.0]),

planet_source, (0.001, 0.6*0.05), new_file=True)

20 Chapter 6. Examples

CHAPTER 7

Class reference

7.1 Coordinates

Coordinate class used in pyrodeo.

The Coordinate class hold the x, y and z coordinates as 3D ndarrays. In addition, it holds the step size in x, y and z
and the size of the grid in x, y and z.

class pyrodeo.coords.Coordinates(x, y, z, log_radial=False)
Class containing coordinates used in pyrodeo.

Parameters

• x (ndarray) – 2D ndarray containing x coordinates

• y (ndarray) – 2D ndarray containing y coordinates

• z (ndarray) – 2D ndarray containing z coordinates

• log_radial (bool, optional) – Flag whether x is a logarithmic radial coordinate.

Note: The validity of the arrays is not checked! To be used in a simulation, they should have the same shape,
with x[:,j,k] containing the x coordinates for all j,k, y[i,:,k] containing the y coordinates for all i,k and z[i,j,:]
containing the z coordinates for all i,j. In addition, x, y and z should have a constant step size.

The following public attributes are available:

x
ndarray – 2D ndarray containing x coordinates

y
ndarray – 2D ndarray containing y coordinates

z
ndarray – 3D ndarray containing z coordinates

21

pyrodeo Documentation, Release 0.0.9

dimensions
[int, int, int] – grid dimensions in the x, y and z direction

dxyz
[float, float, float] – step size in the x, y and z direction

log_radial
bool, optional – Flag whether x is a logarithmic radial coordinate.

classmethod from_1d(x, y, z, log_radial=False)
Initialize from 1D arrays.

Build coordinates from existing 1D ndarrays (should include ghost cells). Calculate dimensions and step
sizes.

Parameters

• x (ndarray) – 1D ndarray containing x coordinates

• y (ndarray) – 1D ndarray containing y coordinates

• z (ndarray) – 1D ndarray containing z coordinates

• log_radial (bool, optional) – Flag whether x is a logarithmic radial coordinate.

Note: The validity of arrays x, y and z is not checked. They should have constant step size.

classmethod from_dims(dimensions=(100, 1, 1), domain=([-0.5, 0.5], [], []), log_radial=False)
Initialize from dimensions and domain size.

Build coordinates given the dimensions of the grid and the size of the domain. Some basic checks are
performed to ensure the resulting coordinates are valid.

Parameters

• dimensions ((int,int,int), optional) – Dimensions of the grid

• domain (([float,float],[float,float],[float,float]), optional) –
Domain boundaries in x, y and z

• log_radial (bool, optional) – Flag whether x will be a logarithmic radial coordinate.

7.2 State

Definition of State class used in pyrodeo.

The State class holds density, velocity and sound speed for a pyrodeo simulation

class pyrodeo.state.State(dens, velx, vely, velz, soundspeed)
Construct state holding density, velocity and sound speed for a pyrodeo simulation.

Parameters

• dens (ndarray) – 3D ndarray containing density.

• velx (ndarray) – 3D ndarray containing x velocity.

• vely (ndarray) – 3D ndarray containing y velocity.

• velz (ndarray) – 3D ndarray containing z velocity.

• soundspeed (ndarray) – 3D ndarray containing sound speed.

22 Chapter 7. Class reference

pyrodeo Documentation, Release 0.0.9

Note: No checks are performed whether density, velocity and sound speed are valid arrays. They should all
have the same shape, the same as the arrays of Coordinates.

The following public attributes are available:

dens
ndarray – 3D ndarray containing density.

velx
ndarray – 3D ndarray containing x velocity.

vely
ndarray – 3D ndarray containing y velocity.

velz
ndarray – 3D ndarray containing z velocity.

soundspeed
ndarray – 3D ndarray containing sound speed.

no_ghost
ndarray – 3D ndarray flagging whether a cell is a ghost cell (=0) or an internal cell (=1)

classmethod copy(other_state)
Construct state from other State.

Set this instance of State equal to an other State, performing an explicit copy.

Parameters other_state (State) – State from which to copy.

classmethod from_dims(dims)
Construct State from grid dimensions.

Construct State given grid dimensions, creating arrays of the correct size with standard (physical) values.

Parameters dims (int, int, int) – Dimensions of the grid in x, y and z.

swap_velocities(dim)
Swap two velocities.

transpose(axis_order)
Change axis order for all fields.

7.3 Param

Simulation parameters used in pyrodeo.

The Param class holds parameters necessary for a pyrodeo simulation.

class pyrodeo.param.Param(param_list)
Create instance from list of parameters.

Parameters param_list ([str, float, float, float, str, str, str]) – List
of parameters; geometry (string), courant (float), fluxlimiter (float), frame_rotation (float),
log_radial (bool), boundaries x in (string), boundaries x out (string), boundaries y in (string),
boundaries y out (string), boundaries z in (string) and boundaries z out (string)

Note: The validity of the parameters is not checked.

7.3. Param 23

pyrodeo Documentation, Release 0.0.9

The following public attributes are available:

geometry
string – ‘cart’ (Cartesian coordinates), ‘sheet’ (shearing sheet), ‘cyl’ (cylindrical coordinates) or ‘sph’
(spherical coordinates).

courant
float – Courant number, should be > 0 and < 1.

limiter_param
float – Limiter parameter. Should be between 1 (minmod) and 2 (superbee).

min_dens
float – Minimum density to switch to HLL solver to remain positive.

frame_rotation
float – Frame rotation rate. Ignored in Cartesian coordinates, should be unity in a shearing sheet calculation
and corresponds to the angular velocity of the coordinate frame in cylindrical coordinates.

log_radial
bool – Flag whether to use logarithmic radial coordinates in cylindrical geometry.

boundaries
(str,str), (str,str), (str,str) – Boundary conditions (in and out) in x y and z: ‘nonreflecting’, ‘closed’, ‘sym-
metric’, or ‘periodic’. In shearing sheet mode, the x boundary can be ‘shear periodic’.

classmethod from_geom(geometry, log_radial=False, boundaries=[[’closed’, ’closed’],
[’closed’, ’closed’], [’closed’, ’closed’]])

Initialization from geometry and boundary conditions.

Construct Parameter object from geometry and boundary conditions. All other parameters are set to stan-
dard values. Check if geometry and boundary conditions are valid.

Parameters

• geometry (string) – ‘cart’ (Cartesian coordinates), ‘sheet’ (shearing sheet), ‘cyl’
(cylindrical coordinates) or ‘sph’ (spherical coordinates).

• boundaries ((str,str), (str,str), (str,str)) – boundary conditions;
‘closed’, ‘nonreflecting’, ‘symmetric’, or ‘periodic’. In shearing sheet mode, the x bound-
ary can be ‘shear periodic’.

to_list()
Convert parameters to list.

Return list of parameters together with list of types. Used for HDF5 output.

Returns array of types, list of parameters.

7.4 Conservation law solver

Defines a generic conservation law solver.

class pyrodeo.claw_solver.ClawSolver
Generic conservation law solver.

Note: Serves as a base class to construct various solvers. Can not be used on its own.

The following method is available:

24 Chapter 7. Class reference

pyrodeo Documentation, Release 0.0.9

limiter(a, b, sb)
Limiter function to limit slopes/fluxes.

This limiter function can, based on the parameter sb, emulate total variation diminishing limiters from
minmod (sb = 1) to superbee (sb = 2).

Parameters

• a (ndarray) – First slope to compare.

• b (ndarray) – Second slope to compare.

• sb (float) – Limiter parameter. Should be >= 1 (minmod, most diffusive limiter) and
<= 2 (superbee, least diffusive limiter).

Returns Limited slopes.

Return type ndarray

7.5 Linear advection solver

Defines a linear advection solver in a periodic domain.

class pyrodeo.linear_advection.LinearAdvection(advection_velocity, limiter_parameter)
Linear advection solver in periodic domain.

Parameters

• advection_velocity (ndarray) – Advection velocity. Must have the same shape as
State members (density, velocity) to be advected and must be uniform in the first dimen-
sion (x).

• limiter_parameter (float) – Parameter setting the limiter function. Should be >=
1 (minmod limiter, most diffusive) and <= 2 (superbee limiter, least diffusive).

Note: The linear advection equation is solved on a periodic x domain. The advection velocity can not depend
on x. If advecting over y, the state will have to be transposed first.

The following public attributes and methods are available:

advection_velocity
ndarray – Advection velocity. Must have the same shape as State members (density, velocity) to be
advected and must be uniform in the first dimension (x).

sb
float – Parameter setting the limiter function. Should be >= 1 (minmod limiter, most diffusive) and <= 2
(superbee limiter, least diffusive).

step(dt, dx, state)
Perform one time step dt.

Evolve the linear advection equation over a time step dt, updating the state. The domain can be multidi-
mensional, but evolution is with respect to x. There is no restriction on the magnitude of dt.

Parameters

• dt (float) – Time step to take.

• dx (float) – Step size in x.

• state (State) – State containing density and velocity

7.5. Linear advection solver 25

pyrodeo Documentation, Release 0.0.9

7.6 Roe solver

Defines the Roe class defining the Roe solver.

class pyrodeo.roe.Roe(flux_limiter, min_dens)
Construct class for the Roe solver.

Constructor sets two basic attributes (sb and min_dens), after which a time step can be taken through the
step() method.

Parameters

• flux_limiter (float) – Flux limiter parameter. Should be >= 1 (minmod, most diffu-
sive limiter) and <= 2 (superbee, least diffusive limiter).

• min_dens (float) – Minimum density when to switch to HLL to preserve positivity.

The following attributes and methods are available:

sb
float – Flux limiter parameter. Should be >= 1 (minmod, most diffusive limiter) and <= 2 (superbee, least
diffusive limiter).

min_dens
float – Minimum density when to switch to HLL to preserve positivity.

limit_flux(dens, dens_left, f1dens, f2dens, dtdx)
Limit second order flux to preserve positivity

Calculate the maximum contribution of the second order flux in order for the density to remain positive.

Parameters

• dens (ndarray) – Current density.

• dens_left (ndarray) – Density in the cell to the left

• f1dens (ndarray) – First order mass flux.

• f2dens (ndarray) – Second order mass flux.

• dtdx (float) – Time step / space step

Returns Array with values >= 0 and <= 1 specifying the maximum contribution of second order
flux for the density to remain positive.

Return type ndarray

step(dt, dx, state, source, bc)
Update state for a single time step.

Parameters

• dt (float) – Time step.

• dx (float) – Space step.

• state (State) – Current State, will be updated.

• source (ndarray) – Geometric source terms, must have same shape as state.dens.

• bc (str, str) – Boundary conditions (in and out): ‘periodic’, ‘symmetric’, or ‘closed’
(other boundary conditions are dealt with elsewhere).

26 Chapter 7. Class reference

pyrodeo Documentation, Release 0.0.9

7.7 Hydro

Defines the Hydro class performing hydrodynamic updates of the state.

class pyrodeo.hydro.Hydro(param, coords)
Construct class for hydrodynamic updates.

Construct from existing instances of Param and Coordinates. It constructs a LinearAdvection in-
stance which will deal with orbital advection, and a Roe instance dealing with hydrodynamics of residual
velocities.

Parameters

• param (Param) – Valid Param object, containing simulation parameters.

• coords (Coordinates) – Valid Coordinates object, containing x, y and z coordinates.
Used to calculate orbital advection velocity.

The following attributes and methods are available:

orbital_advection
LinearAdvection – Instance of LinearAdvection class used to do orbital advection.

roe
Roe – Instance of Roe class dealing with hydrodynamics of residual velocities.

calc_time_step(geometry, coords, state, log_radial=False)
Calculate time step obeying the CFL condition.

Parameters

• geometry (str) – ‘cart’, ‘sheet’ or ‘cyl’.

• coords (Coordinates) – Valid Coordinates object, containing x, y and z coordi-
nates.

• state (State) – Valid State object, containing density and velocity.

• log_radial (bool, optional) – Flag indicating whether a logarithmic radial coordinate
is used

Returns Maximum time step obeying the CFL condition.

Return type float

evolve(t, t_max, coords, param, state, source_func, source_param)
Evolve state from t to tmax.

Parameters

• t (float) – Current simulation time.

• t_max (float) – Simulation time to reach before stopping.

• coords (Coordinates) – Valid Coordinates object, containing x and y coordi-
nates.

• param (Param) – Valid Param object, containing simulation parameters.

• state (State) – Valid State object, containing density and velocity.

• source_func (callable) – Function integrating any extra source terms (non-
geometric). It should accept the following arguments: t, dt, coords, state, source_param.

• source_param (array-like) – Extra parameters for source_func.

7.7. Hydro 27

pyrodeo Documentation, Release 0.0.9

Returns

Tuple consisting of:

t (float): new simulation time (= t_max if no problems encountered).

State: Updated State.

Return type (tuple)

postprocess(coords, param, state, direction)
Inverse of preprocess().

Reverse modifications by preprocess().

Parameters

• coords (Coordinates) – Valid Coordinates object, containing x and y coordi-
nates.

• param (Param) – Valid Param object, containing simulation parameters.

• state (State) – Valid State object, containing density and velocity.

• direction (int) – 0 (integrating x) or 1 (integrating y).

preprocess(coords, param, state, direction)
Modify state to quasi-cartesian form and calculate geometric source terms.

Isothermal hydrodynamics allows for a generic form of the equations in all geometries, subject only to
modifications in the geometric source terms.

Parameters

• coords (Coordinates) – Valid Coordinates object, containing x and y coordi-
nates.

• param (Param) – Valid Param object, containing simulation parameters.

• state (State) – Valid State object, containing density and velocity.

• direction (int) – 0 (integrating x) or 1 (integrating y).

Returns Geometric source term of the same shape as state.dens.

Return type ndarray

shear_periodic_boundaries(t, coords, state)
Set shear-periodic boundary conditions.

In the shearing sheet geometry, the x direction can be quasi-periodic, i.e. periodic but modified for the
shear. Imagine neighbouring sheets shearing past the center sheet.

Parameters

• t (float) – Current simulation time. Used to calculate over what distance neighbouring
sheets have shifted since t = 0.

• coords (Coordinates) – Valid Coordinates object, containing x and y coordi-
nates.

• state (State) – Valid State object, containing density and velocity.

28 Chapter 7. Class reference

pyrodeo Documentation, Release 0.0.9

7.8 Simulation

Defines the Simulation class holding a pyrodeo simulation

class pyrodeo.simulation.Simulation(param, coords, state, t, direc=’./’)
Construct pyrodeo simulation.

Construct simulation from existing instances of Param, Coordinates and State and given simulation time.

Parameters

• param (Param) – Valid Param object, containing simulation parameters.

• coords (Coordinates) – Valid Coordinates object, containing x, y and z coordinates

• state (State) – Valid State object, containing current density, velocity and sound speed.

• t (float) – Simulation time.

• direc (str, optional) – Output directory.

Note: While it is possible to set up a simulation using the basic constructor, no checks are performed whether
the instances of Param, Coordinates and State are valid. It is safer to use from_geom() which will set
up the necessary valid instances.

The following attributes and methods are available:

state
State – State object holding density, velocity and sound speed.

coords
Coordinates – Coordinates object holding x, y and z coordinates.

param
Param – Param object holding simulation parameters.

t
float – Current simulation time.

direc
string – Output directory.

checkpoint(new_file=False)
Save checkpoint in ‘rodeo.h5’

Parameters new_file (bool,optional) – If true, create new output file ‘rodeo.h5’, otherwise
append to file if it exists.

evolve(checkpoints, source_func=None, source_param=None, new_file=False)
Evolve simulation over a list of checkpoints.

Parameters

• checkpoints (ndarray) – List of times to save checkpoints.

• source_func (callable, optional) – Integrate extra source terms. Must be of the
form f(t, dt, coords, state, source_param).

• source_param (ndarray, optional) – Parameters for extra source term. Will be
passed to source_func.

• new_file (bool,optional) – If true, create new output file ‘rodeo.h5’, otherwise append
to file if it exists.

7.8. Simulation 29

pyrodeo Documentation, Release 0.0.9

classmethod from_checkpoint(direc, n=None)
Constructor for simulation class from checkpoint.

Construct simulation class from previously saved checkpoint.

Parameters

• direc (str) – Path to ‘rodeo.h5’. This will be the output directory as well.

• n (int,optional) – Index of checkpoint to restore. If left None, restore last saved check-
point.

classmethod from_geom(geometry, dimensions=(100, 1, 1), domain=([-0.5, 0.5], [], []),
log_radial=False, direc=’./’)

Construct simulation from geometry.

Construct simulation class from geometry, grid dimensions and domain size. All other parameters will be
set to defaults. Simulation time is set to zero.

Parameters

• geometry (string) – ‘cart’ (Cartesian coordinates), ‘sheet’ (shearing sheet), ‘cyl’
(cylindrical coordinates) or ‘sph’ (spherical coordinates).

• dimensions ((int,int,int),optional) – Grid dimensions in x, y and z.

• domain ([(float,float),(float,float),(float,float)],optional) –
Domain boundaries in x, y and z.

• log_radial (bool) – Flag whether to use logarithmic radial coordinate

• direc (str,optional) – Output directory, defaults to current directory.

30 Chapter 7. Class reference

Python Module Index

p
pyrodeo, 21
pyrodeo.claw_solver, 24
pyrodeo.coords, 21
pyrodeo.hydro, 27
pyrodeo.linear_advection, 25
pyrodeo.param, 23
pyrodeo.roe, 26
pyrodeo.simulation, 29
pyrodeo.state, 22

31

pyrodeo Documentation, Release 0.0.9

32 Python Module Index

Index

A
advection_velocity (py-

rodeo.linear_advection.LinearAdvection
attribute), 25

B
boundaries (pyrodeo.param.Param attribute), 24

C
calc_time_step() (pyrodeo.hydro.Hydro method), 27
checkpoint() (pyrodeo.simulation.Simulation method), 29
ClawSolver (class in pyrodeo.claw_solver), 24
Coordinates (class in pyrodeo.coords), 21
coords (pyrodeo.simulation.Simulation attribute), 29
copy() (pyrodeo.state.State class method), 23
courant (pyrodeo.param.Param attribute), 24

D
dens (pyrodeo.state.State attribute), 23
dimensions (pyrodeo.coords.Coordinates attribute), 21
direc (pyrodeo.simulation.Simulation attribute), 29
dxyz (pyrodeo.coords.Coordinates attribute), 22

E
evolve() (pyrodeo.hydro.Hydro method), 27
evolve() (pyrodeo.simulation.Simulation method), 29

F
frame_rotation (pyrodeo.param.Param attribute), 24
from_1d() (pyrodeo.coords.Coordinates class method),

22
from_checkpoint() (pyrodeo.simulation.Simulation class

method), 29
from_dims() (pyrodeo.coords.Coordinates class method),

22
from_dims() (pyrodeo.state.State class method), 23
from_geom() (pyrodeo.param.Param class method), 24
from_geom() (pyrodeo.simulation.Simulation class

method), 30

G
geometry (pyrodeo.param.Param attribute), 24

H
Hydro (class in pyrodeo.hydro), 27

L
limit_flux() (pyrodeo.roe.Roe method), 26
limiter() (pyrodeo.claw_solver.ClawSolver method), 24
limiter_param (pyrodeo.param.Param attribute), 24
LinearAdvection (class in pyrodeo.linear_advection), 25
log_radial (pyrodeo.coords.Coordinates attribute), 22
log_radial (pyrodeo.param.Param attribute), 24

M
min_dens (pyrodeo.param.Param attribute), 24
min_dens (pyrodeo.roe.Roe attribute), 26

N
no_ghost (pyrodeo.state.State attribute), 23

O
orbital_advection (pyrodeo.hydro.Hydro attribute), 27

P
Param (class in pyrodeo.param), 23
param (pyrodeo.simulation.Simulation attribute), 29
postprocess() (pyrodeo.hydro.Hydro method), 28
preprocess() (pyrodeo.hydro.Hydro method), 28
pyrodeo (module), 21
pyrodeo.claw_solver (module), 24
pyrodeo.coords (module), 21
pyrodeo.hydro (module), 27
pyrodeo.linear_advection (module), 25
pyrodeo.param (module), 23
pyrodeo.roe (module), 26
pyrodeo.simulation (module), 29
pyrodeo.state (module), 22

33

pyrodeo Documentation, Release 0.0.9

R
Roe (class in pyrodeo.roe), 26
roe (pyrodeo.hydro.Hydro attribute), 27

S
sb (pyrodeo.linear_advection.LinearAdvection attribute),

25
sb (pyrodeo.roe.Roe attribute), 26
shear_periodic_boundaries() (pyrodeo.hydro.Hydro

method), 28
Simulation (class in pyrodeo.simulation), 29
soundspeed (pyrodeo.state.State attribute), 23
State (class in pyrodeo.state), 22
state (pyrodeo.simulation.Simulation attribute), 29
step() (pyrodeo.linear_advection.LinearAdvection

method), 25
step() (pyrodeo.roe.Roe method), 26
swap_velocities() (pyrodeo.state.State method), 23

T
t (pyrodeo.simulation.Simulation attribute), 29
to_list() (pyrodeo.param.Param method), 24
transpose() (pyrodeo.state.State method), 23

V
velx (pyrodeo.state.State attribute), 23
vely (pyrodeo.state.State attribute), 23
velz (pyrodeo.state.State attribute), 23

X
x (pyrodeo.coords.Coordinates attribute), 21

Y
y (pyrodeo.coords.Coordinates attribute), 21

Z
z (pyrodeo.coords.Coordinates attribute), 21

34 Index

	Installation
	Quick start
	Equations solved
	Cartesian coordinates
	Shearing Sheet
	Cylindrical coordinates
	Spherical coordinates
	Extra source terms

	Numerical method
	Dimensional splitting
	Orbital advection
	Algorithm overview
	Boundary conditions

	Output
	Examples
	Shock tube
	Instability in shearing sheet
	Disc-planet interaction

	Class reference
	Coordinates
	State
	Param
	Conservation law solver
	Linear advection solver
	Roe solver
	Hydro
	Simulation

	Python Module Index

